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Abstract
In this paper, a fourth-order scheme is presented for nonlinear dispersive wave equations.
The scheme uses the fourth-order compact finite-differencemethod for discretization in space
and the fourth-order exponential time-differencing Runge–Kutta (ETDRK) method for the
temporal direction, respectively. The Cauchy integral formula takes effect on stabilizing
the fourth-order ETDRKmethod, and deals with nondiagonal large sparse coefficient matrix
which has complex eigenvalues tend to zero. It can be observed by numerical experiments that
the numerical method is performed efficiently for the solitary wave profile of the Rosenau–
KdV–RLW equation.

Keywords Nonlinear dispersive wave equation · Fourth-order compact finite-difference
method · Fourth-order ETD Runge–Kutta method · Cauchy integral formula
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1 Introduction

Many natural phenomena can be modeled by various nonlinear equations mathematically,
and yet, it has been challenging to evaluate analytical and numerical solutions of these types
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of nonlinear equations. The exact solutions of these nonlinear equations are always hard to
be found, and even analytical solutions are barely available, because the nonlinear terms
are included; therefore, numerical solutions are significantly essential. In this paper, we will
focus on the numerical simulation of some nonlinear dispersive water wave models with
power-law nonlinearity.

Water wave dynamics are usually explained by the KdV equation (Korteweg–de Vries
equation) (Korteweg and De Vries 1895; Cui and Mao 2007; Bahadir 2005), the RLW equa-
tion (Regularized Long-Wave equation) Peregrine (1966, 1967), and the Rosenau equation
(Rosenau 1986, 1988; Park 1990). The KdV equation describes small-amplitude long-wave
behavior on the surface of the water in a channel. The RLW equation describes the undular
bore behavior in water dynamics and simulates different situations of nonlinear dispersive
waves for modeling a small-amplitude long wave in a channel. However, the wave–wave and
wave–wall interaction cannot be explained by the KdV and RLW equations. This can be ful-
filled by the Rosenau equation, because it is suitable for dense discrete system dynamics. For
further more understanding of nonlinear wave behavior, viscous terms uxxt and uxxx need
to be included in the Rosenau equation, which brings the achievement of Rosenau–RLW,
Rosenau–KdV, and Rosenau–KdV–RLW equations. In this paper, we focus on the general-
ized initial-boundary value problem of the Rosenau–KdV–RLW equation with homogeneous
boundary conditions given by

⎧
⎪⎨

⎪⎩

ut + δuxxt + νuxxxxt + αux + θuxxx + ε(u p)x = 0 x ∈ (−∞,+∞), t ∈ (0,∞)

u(x, 0) = u0(x) x ∈ (−∞,+∞)

u(±∞, t) = ux (±∞, t) = uxx (±∞, t) = 0 x ∈ (−∞,+∞),

(1.1)

where u(x, t) denotes the wave profile, and x and t are the spatial and temporal variables,
respectively. α > 0, ε > 0 are the parameters of linear and nonlinear advection term, and
p ≥ 2 is the parameter of power-lawnonlinearity. θ, δ, ν are the parameters ofKdV,RLW, and
Rosenau terms, respectively. The equation (1.1) can be reduced to Rosenau–KdV equation
with δ = 0 and Rosenau–RLW equation with θ = 0.

In the field, a considerable amount of literature has been published to study the solitary
wave behavior of these equations, for both theoretical and numerical analysis. A mass-
preserving nonlinear method which combines a high-order compact scheme and a three-level
average difference iterative algorithm was analyzed and tested for the Rosenau–RLW equa-
tion in Wongsaijai et al. (2019). This equation was also investigated by a conservative
three-level linear-implicit finite difference method in Pan and Zhang (2012). An attempt has
been made to propose a conservative finite-difference scheme for the Rosenau–RLW equa-
tion, which was unconditionally stable and the fourth order in space and the second order in
time by Ghiloufi and Omrani (2017). Another fourth-order accurate three-level conservative
linear finite-difference scheme was proposed by Hu andWang (2013) for the Rosenau–RLW
equation. A conservative unconditionally stable finite-difference scheme for 1D and 2D gen-
eralized Rosenau–KdV equation was proposed by Wang and Dai (2019) with fourth- and
second-order accuracy in space and time, respectively. Wongsaijai and Poochinapan (2014)
developed a three-level second-order accurate weighted average implicit finite-difference
scheme to solve the Rosenau–KdV equation and Rosenau–KdV–RLW equation. A three-
level linear conservative implicit finite-difference scheme was introduced by Wang and Dai
(2017) for solving the Rosenau–KdV–RLWequation. This equationwas simulated efficiently
by a multi-symplectic scheme and an energy-preserving scheme in Cai et al. (2018) based
on the multi-symplectic Hamiltonian formulation of the equation. The combination of a
high efficient compact method for space and a trapezoidal method for time integration was
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designed in Apolinar-Fernndez and Ramos (2018), and numerical analysis was given for the
effects of the parameters with Gaussian initial conditions on wave behavior of these types of
equations.

The high-order compact finite-difference scheme is one of several efficient numerical
approaches (Lele 1992; Li 2008; Sari and Gürarslan 2009), and has been widely used for
various types of partial differential equations(PDEs) in the last decade (Li and Visbal 2006;
Gürarslan 2010; Zhao and Corless 2006; Wang and Zhang 2009). One can approximate
derivatives of any order using much smaller stencils than same-order finite-difference meth-
ods using the relationship between the point and derivative values along a grid line and
solving a linear tri-diagonal or penta-diagonal system of equations. However, the compact
finite-difference scheme usually requires a very small time step to ensure numerical stability
with explicit time solvers such as the explicit Runge–Kutta method. Therefore, methods with
reliable stability prosperity should be adopted alongside.

The exponential time-differencing (ETD) method is an active and effective time solver
with the advantages of solving linear part exactly and loosening the CFL restriction for stiff
PDEs which contain linear and nonlinear terms and can be applied generally for this type
of PDEs (Cox and Matthews 2002; Kassam and Trefethen 2005; Hochbruck and Ostermann
2005;Du andZhu 2005;Qiu et al. 2019). However, the original high-order ETDRunge–Kutta
(ETDRK) schemes (Cox and Matthews 2002) were proved to be unsuccessful because of
disastrous cancellation error when the eigenvalue of the coefficient matrix in the linear part
is equal to or close to zero, and also cannot be applied directly when the coefficient matrix in
the linear term is nondiagonal. To overcome this difficulty, Kassam (Kassam and Trefethen
2005; Thacher 1974; Trefethen 2000) came up with one effective solution, which made use
of the Cauchy integral formula to deal with removable singularity mathematically exact and
numerically accurate. The stability analysis of the ETDRK scheme with the Cauchy integral
formula was provided in Du and Zhu (2005). This point is very crucial in this paper, because
the linear coefficient matrix of the above model obtained by the compact finite-difference
method is always nondiagonal and has complex eigenvalues close to zero.

In Sect. 2, the fourth-order compact method in spatial discretization for (1.1) is described.
In Sect. 3, the equal and more simple modified version of Cox’s fourth-order ETD scheme
(Cox and Matthews 2002) and the Cauchy integral formula are given for the treatment in the
time direction. Stability analysis for the linear version of (1.1) is given in Sect. 4. Extensive
numerical tests are shown in Sect. 5 to illustrate the accuracy and efficiency of the present
method for nonlinear wave motions.

2 Spatial discretization

We consider the Rosenau–KdV–RLW equation (1.1), and set computation domain as [xl , xr ].
�x is the cell size of the equally spaced grid in space. The uniform mesh is distributed as
follows:

x ∈ [xl , xr ], �x = xr − xl
N − 1

, x j = xl + ( j − 1)�x, j = 1 : N .

The advection, convection, dispersion, and Rosenau terms are denoted as

a ≡ ux , c ≡ uxx , d ≡ uxxx , r ≡ uxxxx . (2.1)

The equation (1.1) can be rearranged as

(u + δc + νr)t = (−αa − θd) − εpu p−1a. (2.2)
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By discretizing the first-order and second-order spatial derivatives through three-point,
fourth-order accurate compact method, we have

1

6
a j+1 + 2

3
a j + 1

6
a j−1 = 1

2�x
(u j+1 − u j−1),

1

12
c j+1 + 5

6
c j + 1

12
c j−1 = 1

�x2
(u j+1 − 2u j + u j−1).

(2.3)

Since the third and fourth-order spatial derivatives also can be written in terms of first and
second-order derivatives as d = axx and r = cxx , we have

1

12
d j+1 + 5

6
d j + 1

12
d j−1 = 1

�x2
(a j+1 − 2a j + a j−1),

1

12
r j+1 + 5

6
r j + 1

12
r j−1 = 1

�x2
(c j+1 − 2c j + c j−1).

(2.4)

The homogeneous boundary condition for u(x, t) can be justified infinite computational
domain as far as the wave is sufficiently far away from the boundaries and does not affect
the solution in the interior domain. Therefore, we can easily derive the relationship between
these derivatives from (2.3) and (2.4) with the homogeneous boundary conditions in (1.1)

ÃA = BU , C̃C = JU , C̃ D = J A, C̃ R = JC,

�⇒A = Ã−1BU , C = C̃−1 JU , D = C̃−1 J Ã−1BU , R = C̃−1 JC̃−1 JU ,
(2.5)

where

Ã =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
3

1
6 0

1
6

. . .
. . .

. . .
. . .

. . .
. . . 1

6
0 1

6
2
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
2�x 0

− 1
2�x

. . .
. . .

. . .
. . .

. . .
. . . 1

2�x
0 − 1

2�x 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

,

C̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5
6

1
12 0

1
12

. . .
. . .

. . .
. . .

. . .
. . . 1

12
0 1

12
5
6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

, J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 2
�x2

1
�x2

0

1
�x2

. . .
. . .

. . .
. . .

. . .
. . . 1

�x2

0 1
�x2

− 2
�x2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

,

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

u p−1
1 0

u p−1
2

. . .

u p−1
N−1

0 u p−1
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

,

(2.6)

and U = [u1, u2, . . . , uN ]T , A = [a1, a2, . . . , aN ]T , C = [c1, c2, . . . , cN ]T , D =
[d1, d2, . . . , dN ]T , R = [r1, r2, . . . , rN ]T . The whole system can be written in matrix form

dU

dt
= LU + Nu(U ), (2.7)
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where

L = (I + δC̃−1 J + νC̃−1 JC̃−1 J )−1(−α Ã−1B − θC̃−1 J Ã−1B),

Nu(U ) = (I + δC̃−1 J + νC̃−1 JC̃−1 J )−1(−εpW Ã−1BU ).
(2.8)

3 The fourth-order ETDRKmethod with Cauchy integral formula

The ordinary differential equation (2.7) has the formal solution

Un+1 = e�t LUn +
∫ �t

0
e(�t−τ)L Nu

(
U (tn + τ)

)
dτ, (3.1)

where �t is the temporal step size. This is the main path to propose an exponential time
differencemethod inwhich the stiff linear part is computed analytically,whereas the nonlinear
term is approximated numerically. Let Q = �t L

2 , Z = �t L , and then, the Cox andMatthews
ETDRK4 (Cox and Matthews 2002) scheme is given as

U (1) = eQUn + �t

2

(eQ − I

Q

)
Nu(U

n, tn),

U (2) = eQUn + �t

2

(eQ − I

Q

)
Nu

(
U (1), tn + �t

2

)
,

U (3) = eQU (1) + �t

2

(eQ − I

Q

)(
2Nu

(
U (2), tn + �t

2

) − Nu(U
n, tn)

)
,

Un+1 = eZUn + �t Z−3
[

− 4I − Z + eZ
(
4I − 3Z + Z2)

]
Nu(U

n, tn)

+�t Z−3
[
4I + 2Z + 2eZ (−2I + Z)

](
Nu(U

(1), tn + �t

2

)
+ Nu(U

(2), tn + �t

2

))

+�t Z−3
[

− 4I − 3Z − Z2 + eZ (4I − Z)
]
Nu(U

(3), tn + �t), (3.2)

where I is N × N identity matrix. To write (3.2) in modified form, first, we refer the matrix

exponential ψk(v) = ∑∞
j=0

v j

( j+k)! functions

ψ0(v) = ev, ψ1(v) = ev − 1

v
, ψ2(v) = ev − 1 − v

v2
, ψ3(v) = ev − 1 − v − 1

2v
2

v3
, . . .

(3.3)

The ψk(v) satisfies the recurrence relation

ψk(v) = vψk+1(v) + 1

k! (3.4)

as

ψ2(v) = vψ3(v) + 1

2
, ψ1(v) = zψ2(v) + 1 = v2ψ3(v) + 1

2
v + 1. (3.5)

Now, we rewrite the coefficients in the update formula (3.2) of ETDRK4 as the linear
combination of the above exponential ψ functions

M0(Q) = eQ = ψ0(Q), M0(Z) = eZ = ψ0(Z), M1(Q) = eQ − I

Q
= ψ1(Q),

M2(Z) = Z−3
[

− 4I − Z + eZ
(
4I − 3Z + Z2)

]
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= 4ψ3(Z) − 3Zψ3(Z) + Z2ψ3(Z) + 1

2
Z − 1

2
I ,

M3(Z) = Z−3
[
4I + 2Z + 2eZ (−2I + Z)

]
= −4ψ3(Z) + 2Zψ3(Z) + I ,

M4(Z) = Z−3
[

− 4I − 3Z − Z2 + eZ (4I − Z)
]

= 4ψ3(Z) − Zψ3(Z) − 1

2
I .

(3.6)

If the ETDRK4 scheme is evaluated with these coefficients directly, the numerical scheme
will be unstable because of the cancellation error on the calculation of ψ0(Q), ψ1(Q),
ψ0(Z), ψ3(Z). To reduce the numerical instability caused by cancellation error in high-order
ETD and ETD Runge–Kutta schemes, the modified ETD scheme was proposed in Kassam
and Trefethen (2005) using the Cauchy integral formula to evaluate the linear exponentials
which are used in the nonlinearities in (3.2) for ETDRK4 and also achieved the effort of
generalizing the ETD schemes to nondiagonal problems. The Cauchy integral theory was
introduced in detail in Thacher (1974); Trefethen (2000), while the stability analysis and
truncation error analysis on modified ETD scheme with Cauchy integral formula were given
in Du and Zhu (2005).

Here, we choice to use contour Co in the complex plane that encloses all the eigenvalues
of Z and well separated from 0 to evaluate ψ0(Q), ψ1(Q) and ψ0(Z), ψ3(Z)

f (Z) = 1

2π i

∫

Co

f (t)(t I − Z)−1dt . (3.7)

The contour Co consist of several equally spaced points, usually 32 or 64 points are
sufficient; see Kassam and Trefethen (2005); Du and Zhu (2005). The specific Matlab code
for using the Cauchy integral in practice can be found in Kassam and Trefethen (2005). The
spectrum of L increases along with �t decreases, so the spectrum of Z = L�t still can be
bounded in certain contour as long as we choose the radius of the contour carefully. In Du
and Zhu (2005), some analyses have been proceeded on this topic. It is pointed out that if the
radius is no more than a quarter of the number of quadrature points, the stability region will
not be affected significantly.

For this nonlinear dispersive problem, the eigenvalues of Z are always close to the imag-
inary axis. Here, we take the simplest approach in which the contour Co is a circle of radius
ro = ceil(max(|eig(Z)|)) centered at 0, so that we can always make sure that all eigenvalues
of Z are in this contour in any case of �t . The quadrature angles of the contour are taken as
θ = [ π

32 ,
3π
32 , · · · , 63π

32 ] sampled at 32 equally spaced points z = roθ .

The modification of these coefficients in the above complex circle was given in Kassam
and Trefethen (2005); Thacher (1974) as

ψ0(Q) = 1

2π i

∫

Co

ψ0(z)(z I − Q)−1dz = 1

2π

∫ 2π

0
ezz(z I − Q)−1dθ,

ψ1(Q) = 1

2π i

∫

Co

ψ1(z)(z I − Q)−1dz = 1

2π

∫ 2π

0
(ez − 1)(z I − Q)−1dθ,

ψ0(Z) = 1

2π i

∫

Co

ψ0(z)(z I − Z)−1dz = 1

2π

∫ 2π

0
ezz(z I − Z)−1dθ,
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ψ3(Z) = 1

2π i

∫

Co

ψ3(z)(z I − Z)−1dz = 1

2π

∫ 2π

0

ez − 1 − z − 1
2 z

2

z2
(z I − Z)−1dθ.

(3.8)

We have

q1(z) = ezz(z I − Q)−1, q2(z) = (ez − 1)(z I − Q)−1,

q3(z) = ezz(z I − Z)−1, q4(z) = ez − 1 − z − 1
2 z

2

z2
(z I − z)−1.

(3.9)

We obtain the modified version of these coefficients in complex plane by the means of
exponentially fast converging trapezoid rule

ψ̃0(Q) = 1

32

32∑

s=1

q1(zs), ψ̃1(Q) = 1

32

32∑

s=1

q2(zs),

ψ̃0(Z) = 1

32

32∑

s=1

q3(zs), ψ̃3(Z) = 1

32

32∑

s=1

q4(zs).

(3.10)

Finally, wemake use of above ψ̃0(Q), ψ̃1(Q), ψ̃0(Z), ψ̃3(Z) to evaluate the coefficients
M0(Q), M0(Z), M1(Q), M2(Z), M3(Z), M4(Z)

M̃0(Q) = ψ̃0(Q), M̃1(Q) = ψ̃1(Q), M̃0(Z) = ψ̃0(Z),

M̃2(Z) = 4ψ̃3(Z) − 3Zψ̃3(Z) + Z2ψ̃3(Z) + 1

2
Z − 1

2
I ,

M̃3(Z) = −4ψ̃3(Z) + 2Zψ̃3(Z) + I ,

M̃4(Z) = 4ψ̃3(Z) − Zψ̃3(Z) − 1

2
I .

(3.11)

In this way, we can efficiently avoid extra computation and cancellation error caused by
high-order matrix inversion on coefficients, since most of them are expressed by the matrix
product ofψ3(Z) and power function of Z . We have the final fourth-order ETDRunge–Kutta
scheme takes the form as

U (1) =M̃0(Q)Un + �t

2
M̃1(Q)Nu(U

n, tn),

U (2) =M̃0(Q)Un + �t

2
M̃1(Q)Nu

(
U (1), tn + �t

2

)
,

U (3) =M̃0(Q)U (1) + �t

2
M̃1(Q)

(
2Nu

(
U (2), tn + �t

2

) − Nu(U
n, tn)

)
,

Un+1 =M̃0(Z)Un + �t M̃2(Z)Nu(U
n, tn) + �t M̃3(Z)

(
Nu

(
U (1), tn + �t

2

)

+ Nu
(
U (2), tn + �t

2

)) + �t M̃4(Z)Nu(U
(3), tn + �t).

(3.12)
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4 Linear stability of the fourth-order ETD Runge–Kutta method with
Cauchy integral

Here, we give stability property of (3.12) for the linear scalar version of (1.1) with p = 1. Use
of u j = ūeik j�x , a j = āeik j�x , c j = c̄eik j�x at (x j , t), the Fourier relationship between
varying spacial derivatives in (2.3) and (2.4) are

ā = ū
i sinh(k�x)

�x
( 1
3 cosh(k�x) + 2

3

) , c̄ = ū
2 cosh(k�x) − 2

�x2
(
1
6 cosh(k�x) + 5

6

) ,

d̄ = ā
2 cosh(k�x) − 2

�x2
(
1
6 cosh(k�x) + 5

6

) , r̄ = c̄
2 cosh(k�x) − 2

�x2
(
1
6 cosh(k�x) + 5

6

) .

(4.1)

The scalar linear version of (2.7) yields

ūt = lū + λū, (4.2)

where

l =
−α

i sinh(k�x)

�x
(
1
3 cosh(k�x)+ 2

3

) − θ
i sinh(k�x)

�x
(
1
3 cosh(k�x)+ 2

3

) 2 cosh(k�x)−2

�x2
(
1
6 cosh(k�x)+ 5

6

)

1 + δ
2 cosh(k�x)−2

�x2
(
1
6 cosh(k�x)+ 5

6

) + ν
( 2 cosh(k�x)−2

�x2
(
1
6 cosh(k�x)+ 5

6

)
)2 ,

λ =
−ε

i sinh(k�x)

�x
(
1
3 cosh(k�x)+ 2

3

)

1 + δ
2 cosh(k�x)−2

�x2
(
1
6 cosh(k�x)+ 5

6

) + ν
( 2 cosh(k�x)−2

�x2
(
1
6 cosh(k�x)+ 5

6

)
)2 .

Recall the approximation of the two-point quadrature amount in scalar case

e
l�t
2 − 1

l
∼ 1

2

(e
(l+roi)�t

2 − 1

l + roi
+ e

(l−roi)�t
2 − 1

l − roi

)
, (4.3)

where roi and−roi are so chosen as the quadrature points for the approximation of the contour
integral in contour with radius ro and centered at 0 in this paper. Simplify the right-hand side
of (4.3) and let

e
l�t
2 − 1

l
∼ le

l�t
2 cos( ro�t

2 ) + roe
l�t
2 sin( ro�t

2 ) − l

l2 + r2o
= φ. (4.4)

From (3.2), we can write ū(1), ū(2), ū(3), and the corresponding amplification factors as

ū(1) = (
e
l�t
2 + φλ

)
ū, g(1) = e

l�t
2 + φλ,

ū(2) = (
e
l�t
2 + φλg(1)

)
ū, g(2) = e

l�t
2 + φλg(1),

ū(3) = (
e
l�t
2 g(1) + φλ(2g(2) − 1)

)
ū, g(3) = e

l�t
2 g(1) + φλ(2g(2) − 1).

(4.5)

Using these, we finally can derive the corresponding amplification factor

G(l, λ) = el�t + ϕ1λ + ϕ2λ(g(1) + g(2)) + ϕ3λg
(3); (4.6)

here, ϕ1 = −4−l�t+(φl+1)2(4−3l�t+�t2l2)
�t2l3

, ϕ2 = 4+2l�t+2(φl+1)2(−2+l�t)
�t2l3

,
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Fig. 1 Amplification factor for varies CFL and�x for the linear version of (1.1) with parameters δ = −1, ν =
1, θ = 1, α = 0, ε = 1, p = 1(left) and the partial graph of amplification factor for CFL = [0, 1],�x =
[10(−10), 1](right)

ϕ3 = −4−3l�t−�t2l2+(φl+1)2(4−l�t)
�t2l3

.
In Du and Zhu (2005), significant analysis is given in the case of l is negative real, while

λ is complex, and both l, λ are real. Notice that in our case, l and λ are both complex,
which still remains as an open problem. Unfortunately, we do not know any expression for
|G(l, λ)| ≤ 1.

To demonstrate the stability prosperity of the scheme, we compute the amplification
factor |G(l, λ)| for various CFL = �t

�x and �x for the linear version of (1.1) with
parameters δ = −1, ν = 1, θ = 1, α = 0, ε = 1, p = 1. Notice that in computing
φ, g(1), g(2), g(3), ϕ1, ϕ2, ϕ3 suffer from numerical instability for l and �t close to zero.
Because of that, we will use their five-term Taylor expansions in computational process. In
Fig. 1(left), we take CFL = [0, 10],�x = [10(−10), 1] and �t = CFL · �x .

It can be observed that |G(l, λ)| gets bigger than 1 with small increase along with the
increase in CFL and �x . Figure 1(right) is the partial graph for CFL = [0, 1], and �x =
[10(−10), 1]. In this paper, we take CFL = 1,�x = �t ≤ 0.4 for all numerical simulation
to ensure the numerical stability of the scheme for equation (1.1).

5 Numerical results

In this section, The algorithm (3.12) is applied through the Rosenau–RLW equation,
Rosenau–KdV equation, and Rosenau–KdV–RLW equation to confirm the performance of
the present method. The advantages of the ETD method allow us to take a large time step,
so that �t = CFL · �x with CFL = 1 is sufficiently enough for fourth-order convergence
rate both in space and time in terms of L2 and L∞ for each test cases. The corresponding
contour and eigenvalues of each test cases are also plotted.

Example 1 Considering Rosenau–RLW equation (1.1) with parameters δ = −1, ν = 1, α =
1, ε = 1

2 , p = 2

ut − uxxt + uxxxxt + ux + 1

2
(u2)x = 0, x ∈ [−50, 150], t ∈ [0, T ],

with the initial condition u(x, 0) = 15
19 sech

4
(√

13
26 x

)
and the analytical solitarywave solution

u(x, t) = 15
19 sech

4
(√

13
26 (x − 169

133 t)
)
.
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Fig. 2 Numerical solution of Rosenau–RLW equation with CFL = 1,�x = �t = 0.1 at T = 24 in interval
x ∈ [−50, 150] (left) and error (right) for Example 1

Fig. 3 The eigenvalues and the corresponding contour with CFL = 1,�x = �t = 0.1 for Example 1

Numerical solutions on various mesh sizes are calculated and compared with the exact
solution of the Rosenau–RLWequation.Wemodel a solitarywave approximately and present
the errors and rates of convergence in terms of L2 and L∞ of the simulation at T = 24 for
�t = CFL · �x with CFL = 1 over interval x ∈ [−50, 150]. Numerical results are
compared with previously published studies assessed in the introduction on Rosenau–RLW
equation under same mesh in Table 1. We can see that experimental results agree with the
theoretical fourth-order convergence rate in the case �x = �t .

Figure 2(left) shows that the solitary wave curve matches excellently with exact solution
when �x = �t = 0.1 at T = 24 over interval x ∈ [−50, 150]. From Fig. 2(right), it can be
seen that error mostly generates at two sides of the solitary wave peak. The eigenvalues and
corresponding Contour are also plotted in this case in Fig. 3. Several right-propagating waves
with almost identical amplitude are generated in Fig. 4 at different times T = 0, 10, 20.
Solitary wave moves far away from its generation location through time with unchanged
shape.

Example 2 Considering Rosenau–KdV equation (1.1) with parameters δ = 0, ν = 1, α =
1, θ = 1, ε = 1

2 , p = 2

ut + uxxxxt + uxxx + ux + (
1

2
u2)x = 0, x ∈ [−70, 100], t ∈ [0, T ].
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Fig. 4 Wave graph of Rosenau–RLW equation with CFL = 1,�x = �t = 0.1 at T = 0, 10, 20 in interval
x ∈ [−50, 150] for Example 1

Fig. 5 Numerical solution of Rosenau–KdV equation with CFL = 1,�x = �t = 0.1 at T = 20 in interval
x ∈ [−70, 100] for Example 2

Rosenau–KdV equation has the analytical solitary wave solution u(x, t) = M

sech
4

p−1 [W (x − V t)] as in Razborova et al. (2013) with wave width

W = p−1
p+1

[−αν(p2+2p+5)+
√

α2ν2(p2+2p+5)2+16θ2ν(p+1)2

32θν

] 1
2
, wave amplitude

M =
[ [−αν(p2+2p+5)+

√
α2ν2(p2+2p+5)2+16θ2ν(p+1)2](p+3)(3p+1)
16νε(p+1)(p2+2p+5)

] 1
p−1

, and wave velocity

V = θ(p−1)2

4νW 2(p2+2p+5)
. Here, we take the initial condition to be u(x, 0) = Msech

4
p−1 (Wx).

We simulate this solitary wave problem under various meshes. The calculated errors, and
rates of convergence in terms of L2 and L∞ at T = 20 for �t = CFL · �x over interval
x ∈ [−70, 100] are listed in Table 2. It can be observed that the present scheme has the
smallest error with fourth-order convergence than the other three numerical schemes under
the same mesh.

The solution profile and distribution of absolute error are shown in the right and left of
Fig. 5 for �x = �t = 0.1 at time T = 20. It seems that the maximum error occurs near the
peak amplitude of the solitary wave. The eigenvalues and contour for this problem also can
be seen in Fig. 6. The initial solitary wave at T = 0 and numerical solutions at T = 10, 20
with �x = �t = 0.1 are given in Fig. 7.
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Fig. 6 The eigenvalues and the corresponding Contour with CFL = 1,�x = �t = 0.1 for Example 2

Fig. 7 Wave graph of Rosenau–KdV equation with CFL = 1,�x = �t = 0.1 at T = 0, 10, 20 in interval
x ∈ [−70, 100] for Example 2

Example 3 Considering Rosenau–KdV–RLW equation (1.1) with parameters δ = −1, ν =
1, α = 1, θ = 1, ε = 1

2 , p = 2

ut − uxxt + uxxxxt + ux + uxxx + 1

2
(u2)x = 0, x ∈ [−40, 60], t ∈ [0, T ].

Rosenau–KdV–RLW equation has solitary wave solution u(x, t) = Msech
4

p−1 [W (x −
V t)] with S = √

α2ν2(p2 + 2p + 5)2 + 16(p + 1)2θν(θ − αδ), wave width W =
p−1
p+1

√
S−(p2+2p+5)αν

32θν
, wave speed V = θ(p−1)2

(p−1)2δ+4νW 2(p2+2p+5)
, and amplitude M =

[
8(p+1)(p+3)(3p+1)θνW 4

ε(p−1)2
(
(p−1)2δ+4(p2+2p+5)νW 2

)
] 1

p−1
. Here, we choose the initial condition to be u(x, 0) =

Msech
4

p−1 (Wx).
We report the calculated errors, and rates of convergence in terms of L2 and L∞ at

T = 10 for �t = CFL · �x with CFL = 1 over interval x ∈ [−40, 60] in Table 3.
We make comparison on the computation errors and convergence rates among three different
numerical schemes to illustrate the superiority of present scheme (3.12) under the samemesh.
Figure 8(left) presents numerical solitary wave profile for �x = �t = 0.1 at time T = 10,
which is close to analytical values. Figure 8(right) presents the corresponding distribution of
absolute errors at time T = 10. The eigenvalues and contour for this problem are plotted in
Fig. 9. Furthermore, Fig. 10 indicates that the right-propagating solitary wave profile travels
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Fig. 8 Numerical solution of Rosenau–KDV–RLW equation with CFL = 1,�t = �x = 0.1 at T = 10 in
interval x ∈ [−40, 60] (left) and error (right) for Example 3

Fig. 9 The eigenvalues and the corresponding Contour with CFL = 1,�x = �t = 0.1 for Example 3

Fig. 10 Wave graph of Rosenau–KDV–RLW equation with CFL = 1, �t = �x = 0.1 at T = 0, 10, 20 in
interval x ∈ [−40, 60] for Example 3

with unchanged shape and amplitude of the same height through times T = 0, 10, 20 under
�x = �t = 0.1.
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6 Concluding remark

The fourth-order compact finite-difference method for spatial discretization and fourth-order
ETDRK method with Cauchy integral for time discretization is applied for some nonlinear
dispersive wave equations. The Cauchy integral formula plays a vital role in stabilizing the
numerical method for this type of nonlinear dispersion equations in the case of nondiagonal
large sparse coefficientmatrixwith extremely small complex eigenvalues. Stability analysis is
given by computation in the case of complex linear and nonlinear coefficient.Wemainly focus
on simulation of the solitary wave of some nonlinear dispersive wave equations. Numerical
simulations indicated that the present method is very efficient with loosely restricted CFL
condition. As mentioned in Hochbruck and Ostermann (2005), fourth-order convergence
cannot be expected, since the stiff order of the scheme might deteriorate down to order 2.
However, fourth-order accuracy is still achieved in every test cases in this paper. For further
use of present method, the shock wave problem in fluids, such as nonlinear Burgers equations
(Yee et al. 2012) or Euler equations (Soni et al. 2017), can also be solved in this way as long
as the convection term is treated by efficient shock solvers.
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